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Abstract

This paper focuses on temporal constraint prob-
lems where the objective is to optimize a set of lo-
cal preferences for when events occur. In previous
work, a subclass of these problems has been for-
malized as a generalization of Temporal CSPs, and
a tractable strategy for optimization has been pro-
posed, where global optimality is defined as maxi-
mizing the minimum of the component preference
values. This criterion for optimality, which we call
“Weakest Link Optimization” (WLO), is known to
have limited practical usefulness because solutions
are compared only on the basis of their worst value;
thus, there is no requirement to improve the other
values. To address this limitation, we introduce a
new algorithm that re-applies WLO iteratively in
a way that leads to improvement of all the values.
We show the value of this strategy by proving that,
with suitable preference functions, the resulting so-
lutions are Pareto Optimal.

1 Introduction
The notion of softness has been applied to either a constraint
or planning goal, indicating that either can be satisfied to mat-
ters of degree. It is not hard to find applicable real world
problems for such a notion. For example, in an earth orbit-
ing spacecraft, sensitive instruments like imagers have duty
cycles, which impose restrictions on the amount of use of
the instrument. A duty cycle is typically a complex function
based on both the expected lifetime of the instrument, as well
as short term concerns such as the amount of heat it can be
exposed to while turned on. Duty cycles impose constraints
on the duration of the periods for which the instrument can
be on, but it is natural to view this duration as flexible. For
example, this restriction might be waived to capture an im-
portant event such as an active volcano. Thus, the flexibility
of the duty cycle “softens” the constraint that the instrument
cannot be on beyond a certain duration. Reasoning about soft
constraints for planning or scheduling is for the purpose of
finding a solution that satisfies the constraints to the highest
degree possible.

For temporal reasoning problems, a simple method for
evaluating the global temporal preference of a solution to

a Temporal CSP involving local temporal preferences was
introduced in [Khatib et al., 2001], based on maximizing
the minimally preferred local preference for a time value.
Because the locally minimally preferred assignment can be
viewed as a sort of “weakest link” with respect to the global
solution, we dub this method “weakest link optimization”
(WLO), in the spirit of the television game show. WLO
can be formalized using a generalization of Simple Tempo-
ral Problems (STPs), called STPs with Preferences (STPPs),
that preserves the capability to tractably solve for solutions
(with suitable preference functions associated with the tem-
poral constraints). Unfortunately, as often occurs, this effi-
ciency has a price. Specifically, WLO offers an insufficiently
fine-grained method for comparing solutions, for it is based
on a single value, viz., the “weakest link.” It is consequently
easy to conceive of examples where WLO would accept in-
tuitively inferior solutions because of this myopic focus. Al-
though it is possible to consider more robust alternatives to a
WLO strategy for evaluating solutions, it is not clear whether
any of these methods would preserve the computational ben-
efits of WLO. This impasse is the starting point of the work
described in this paper.

We propose here to make WLO more robust by combin-
ing it with an iterative strategy for solving STPPs. The pro-
cess involves repeatedly restricting temporal values for the
weakest links, resetting their preference values, and apply-
ing the WLO procedure to the reduced problem that results
from these changes. The intuition is a simple one, and we
motivate this technique with an example from a Mars Rover
planning domain. In Section 2, we summarize the soft con-
straint problem solver based on WLO introduced previously.
We then illustrate in section 3 the deficiencies of WLO on
a simple example, which also reveals the intuition underly-
ing the proposed strategy for overcoming this deficiency. The
main contribution of this paper is discussed in sections 4 and
5, which formalize this strategy and prove that any solution
generated by an application of this strategy is in the set of
Pareto optimal solutions for the original problem.

2 Reasoning about preferences with soft
constraints

This section reviews the material first presented in [Khatib et
al., 2001]. There, a class of constrained optimization prob-



lems, called Temporal Constraint Satisfaction Problems with
Preferences (TCSPPs), was first defined. A TCSPP is a gen-
eralization of classical TCSPs which allows for a represen-
tation of soft constraints. In classical TCSPs [Dechter et
al., 1991], a unary constraint over a variable

�
represent-

ing an event restricts the domain of
�

, representing its pos-
sible times of occurrence; the constraint is then shorthand for������� � �	�
�
������
����������� � �	�����

. Similarly, a
binary constraint over

�
and � restricts the values of the dis-

tance ��� � , in which case the constraint can be expressed as������� ��� � ���
�
�����
������������� ��� � � ����� . A uniform,
binary representation of all the constraints results from intro-
ducing a variable

�"!
for the beginning of time, and recasting

unary constraints as binary constraints involving the distance� � � ! .
A soft temporal constraint is a pair #�$&%('*) , where $ is a set

of intervals +�, � % �(- % �.� �0/ of temporal values, and ' is a func-
tion from 1�$ to a set 2 of values. Intuitively, ' expresses
local preferences for temporal values based on the value it as-
signs from 2 . For example, the soft constraint represented
by #3+�,546%87 - %�, 9�%�40: -;/ %�<�=?>@) can be interpreted to mean that the
temporal assignments must be selected from either of the in-
tervals in the set, and the function <�=A> assigns a greater pref-
erence to smaller values. The cardinality of the set 2 , i.e.,
the number of distinct preference values, reflects the ability
to discriminate among degrees of preference for temporal as-
signments. The class of TCSPPs in which each soft constraint
consists of a single interval is called Simple Temporal Prob-
lems with Preferences (STPPs).

Local preferences combine to form global preferences for
complete assignments. To formalize these operations, 2 can
be structured in the form of a c-semiring [Bistarelli et al.,
1997]. A semiring is a tuple #�2B%�CD%FE% 0,1 ) such thatG 2 is a set and 0, 1 H�2 ;
G C , the additive operation, is commutative, associative

and I is its identity element
�;� C 0 J �K� ;G E , the multiplicative operation, is associative, distributes

over C , 1 is its identity element and 0 is its absorbing
element

��� E 0 J 0
�
.

A c-semiring is a semiring in which C is idempotent (i.e.,� C � J � % � H�2 ), 4 is its absorbing element, and E is
commutative. The semi-ring representation of operations on
preference values is used as part of the proof of tractability
for restricted sub-classes of TCSPP, which occurs below.

A solution to a TCSPP is a complete assignment to all
the variables that satisfies the temporal constraints. An arbi-
trary assignment of values to variables has a global preference
value, obtained by combining the local preference values us-
ing the semiring operations. A c-semiring induces a partial
order relation

��L
over 2 to compare preference values of ar-

bitrary assignments;
�M��LN�

can be read b is more preferred
than a. Classical Temporal CSPs can be seen as a special case
of TCSPP, with “soft” constraints that assign the “best” pref-
erence value to each element in the domain, and the “worst”
value to everything else. The optimal solutions of a TCSPP
are those solutions which have the best preference value in
terms of the ordering

� L
.

Weakest Link Optimization (WLO) is formalized via the
semiring O@P.Q�RSJT#;2B%8< ��U %8<V=A>W%YX*%
ZK) , that is, where for� % � H[2 ,

� C � J\< ��U]��� % �^� and
� E � J_<�=A> ��� % �^� , andZ � X � is the best (worst) preference value. Given a solution `

in a TCSPP with semiring OaP.Q�R , let b*cedfJg#;$^cih d�%('jc�h d0) be
a soft constraint over variables

� ck% � d and
�il c�% l d � be the

projection of ` over the values assigned to variables
� c and� d (abbreviated as

�il c % l d � Jm`3n�oqp h o]r ). The correspond-
ing preference value given by 'Fcsd is 'jcsd �il d�� l c � , wherel dB� l ctH�$^c�h d . The global preference value of ` , l���u�� ` � , is
defined as

l���u�� ` � J�<V=A>q+j' ced �il d � l c ��v���l c % l d � J[`3n�o]p h oar / .
Thus, a “weakest link value” for a solution ` is any minimum'jced �il dq� l c � that determines

l���u�� ` � , and the WLO-optimal so-
lutions to a problem are the ones that have a maximum weak-
est link value.

As with classical (binary) CSPs, TCSPPs can be arranged
to form a network of nodes representing variables, and edges
labeled with constraint information. Given a network of soft
constraints, under certain restrictions on the properties of the
semiring, it can be shown that local consistency techniques
can be applied in polynomial time to find an equivalent mini-
mal network in which the constraints are as explicit as possi-
ble. The restrictions that suffice for this result apply to

1. the “shape” of the preference functions used in the soft
constraints;

2. the multiplicative operator E (it should be idempotent);
and

3. the ordering of the preference values (
�wL

must be a total
ordering).

The class of restricted preference functions that suffice to
guarantee that local consistency can be meaningfully applied
to soft constraint networks is called semi-convex. This class
includes linear, convex, and also some step functions. All
of these functions have the property that if one draws a hor-
izontal line anywhere in the Cartesian plane of the graph of
the function, the set of

�
such that ' � � � is not below the

line forms an interval. Semi-convexity is preserved under the
operations performed by local consistency (intersection and
composition). STPPs with semiring OaP.Q�R can easily be seen
to satisfy these restrictions.

The same restrictions that allow local consistency to be
applied are sufficient to prove that STPPs can be solved
tractably. Finding an optimal solution of the given STPP
with semi-convex preference functions reduces to a two-step
search process consisting of iteratively choosing a preference
value, “chopping” every preference function at that point,
then solving a STP defined by considering the interval of tem-
poral values whose preference values lies above the chop line
(semi-convexity ensures that there is a single interval above
the chop point, hence that the problem is indeed an STP).
Figure 1 illustrates the chopping process. It has been shown
that the “highest” chop point that results in a solvable STP in
fact produces an STP whose solutions are exactly the optimal
solutions of the original STPP. Binary search can be used to
select candidate chop points, making the technique for solv-
ing the STPP tractable. The second step, solving the induced
STP, can be performed by transforming the graph associated
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Figure 1: “Chopping” a semi-convex function
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Figure 2: The STPP for the Rover Science Planning Problem
where T is any timepoint

with this STP into a distance graph, then solving two single-
source shortest path problems on the distance graph. (The
solutions to these provide upper and lower time bounds for
each event. If the problem has a solution, then for each event
it is possible to arbitrarily pick a time within its time bounds,
and find corresponding times for the other events such that the
set of times for all the events satisfy the interval constraints.)
For ' nodes and ( edges, the complexity of this phase is) � (�' � (using the Bellman-Ford algorithm [Cormen et al.,
1990]).

3 The problem with WLO
Formalized in this way, WLO offers what amounts to a coarse
method for comparing solutions, one based on the minimal
preference value over all the projections of the solutions to lo-
cal preference functions. Consequently, the advice given to a
temporal solver by WLO may be insufficient to find solutions
that are intuitively more globally preferable. For example,
consider the following simple Mars rover planning problem,
illustrated in Figure 2. The rover has a sensing instrument and
a CPU. There are two sensing events, of durations 3 time units
and 1 time unit (indicated in the figure by the pairs of nodes
labeled ins * � % ins + � and ins *, % ins +, respectively). There is a hard
temporal constraint that the CPU be on while the instrument
is on, as well as a soft constraint that the CPU should be on
as little as possible, to conserve power. This constraint is
expressed in the STPP as a function from temporal values in-
dicating the duration that the CPU is on, to preference values.
For simplicity, we assume that the preference function <�=A>
on the CPU duration constraints is the negated identity func-
tion; i.e., <�=?> � ` � J �` ; thus higher preference values, i.e.
shorter durations, are preferred. Because the CPU must be on
at least as long as the sensing events, any globally preferred
solution using WLO has preference value -3. The set of solu-

tions that have the optimal value includes solutions in which
the CPU duration for the second sensing event varies from 1
to 3 time units. The fact that WLO is unable to discriminate
between the global values of these solutions, despite the fact
that the one with 1 time unit is obviously preferable to the
others, is a clear limitation of WLO.

One way of formalizing this drawback of WLO is to ob-
serve that a WLO policy is not Pareto Optimal. To see this,
we reformulate the set of preference functions of a STPP,' � % �
��� %('.- as criteria requiring simultaneous optimization,
and let /wJ , ` � % �
�
� %�` ��- and /10 J , `20 � % �
�
� `20- - be two solutions
to a given STPP. /10 dominates / if for each 3 , '0d � `?d � � '�d � `20d �
and for some 4 , '65 � `75 �98 '.5 � `205 � . In a Pareto optimiza-
tion problem, the Pareto optimal set of solutions is the set
of non-dominated solutions. Similarly, let the WLO-optimal
set be the set of optimal solutions that result from applying
the chopping technique for solving STPPs described above.
Clearly, applying WLO to an STPP does not guarantee that
the set of WLO-optimal solutions is a Pareto optimal set. In
the rover planning problem, for example, suppose we con-
sider only solutions where the CPU duration for the first sens-
ing event is 3. Then the solution in which the CPU duration
for the second sensing event is 1 time unit dominates the so-
lution in which it is 2 time units, but both are WLO-optimal,
since they have the same weakest link value.1

Assuming that Pareto-optimality is a desirable objective in
optimization, a reasonable response to this deficiency is to
replace WLO with an alternative strategy for evaluating solu-
tion tuples. A natural, and more robust alternative evaluates
solutions by summing the preference values, and ordering
them based on preferences towards larger values. (This strat-
egy would also ensure Pareto optimality, since every maxi-
mum sum solution is Pareto optimal.) This policy might be
dubbed “utilitarian.” The main drawback to this alternative
is that the ability to solve STPPs tractably is no longer ap-
parent. The reason is that the formalization of utilitarianism
as a semiring forces the multiplicative operator (in this case,
/;:&< ), not to be idempotent (i.e.,

� C �=<J � ), a condition
required in the proof that a local consistency approach is ap-
plicable to the soft constraint reasoning problem.

Of course, it is still possible to apply a utilitarian frame-
work for optimizing preferences, using either local search or
a complete search strategy such as branch and bound. Rather
than pursuing this direction of resolving the problems with
WLO, we select another approach, based on an algorithm that
interleaves flexible assignment with propagation using WLO.

4 An algorithm for Pareto Optimization
The proposed solution is based on the intuition that if a con-
straint solver using WLO could iteratively “ignore” the weak-
est link values (i.e. the values that contributed to the global
solution evaluation) then it could eventually recognize solu-
tions that dominate others in the Pareto sense. For example,
in the Rover Planning problem illustrated earlier, if the weak-
est link value of the global solution could be “ignored,” the
WLO solver could recognize that a solution with the CPU on

1This phenomenon is often referred to in the literature as the
“drowning effect.”



Inputs: STPP
� J ��� %�� �

Output:
STP

��� %���� � whose solutions are Pareto optimal for
�

.
(1) � � J��
(2) Do
(3) Solve

��� %	��� � using WLO
(4) Delete all weakest link soft constraints from �
�
(5) For each deleted constraint #�, � % �(- %('*) ,
(6) add #�, ������ % ������;- %Y'�� +2*

� ) to � �
(7) until (3)-(6) leave

��� %	��� � unchanged
(8) Return

��� %	��� �

Figure 3: STPP solver WLO+ returns a solution in the Pareto
optimal set of solutions

for 1 time unit during the second instrument event is to be
preferred to one where the CPU is on for 2 or 3 time units.

We formalize this intuition by a procedure wherein the
original STPP is transformed by iteratively selecting what we
shall refer to as a weakest link constraint, changing the con-
straint in such a way that it can effectively be “ignored,” and
solving the transformed problem. A weakest link (soft) con-
straint for a WLO set of solutions is one in which the prefer-
ence value of its duration in all the WLO solutions is the same
as the chop level

l
of the optimal STP using WLO. For exam-

ple, after applying WLO to the problem in Figure 2, the CPU
duration constraint associated with the first sensing event will
be a weakest link, since it now has a fixed preference value
of -3. However, the CPU constraint for the second event will
not be a weakest link since its preference value can still vary
from -3 to -1.

We also define a weakest link constraint to be open if
l

is
not the “best” preference value (i.e.,

l98 Z , where Z is the
designated “best” value among the values in the semi-ring).

Formalizing the process of “ignoring” weakest link values
is a two-step process of restricting the weakest links to their
intervals of optimal temporal values, while eliminating their
WLO restraining influence by resetting their preferences to a
single, “best” value. Formally, the process consists of:G Squeezing the temporal domain to include all and only

those values which are optimally preferred; andG Replacing the preference function by one that assigns
the most preferred value (i.e. Z ) to each element in the
new domain.

The first step ensures that only the best temporal values are
part of any solution, and the second step allows WLO to be
re-applied to eliminate Pareto-dominated solutions from the
remaining solution space.

The algorithm WLO+ (Figure 3) returns a Simple Tem-
poral Problem (STP) whose solutions are contained in the
WLO-optimal, Pareto-optimal solutions to the original STPP,�

. Where � is a set of soft constraints, the STPP
��� %	� � �

is solved (step 3) using the chopping approach described ear-
lier. In step 5, we denote the soft constraint that results from
the two-step process described above as #8, ������ % ������?- %('�� +2*

� ) ,
where , ������ % ������;- is the interval of temporal values that are

Pareto Optimal Solutions

WLO Solutions

s1

s2

s3
s4s5
s6

s s’ s is dominated by s’:

s7

s8

Figure 4: Relationships between Solution Spaces for STPPs
that are WLO or Pareto Optimal

optimally preferred, and '�� +2*
�

is the preference function such
that ' � +2*

� �ilK� J 1 for any input value
l

. Notice that the run
time of ��� ) C is

) �(v � v � times the time it takes to executeO�� u�l������ %�� � � , which is a polynomial.
We now proceed to prove the main result, in two steps. In

this section we assume the existence of weakest links at every
iteration of the ��� ) C algorithm, and show that the subset of
solutions of the input STPP returned by WLO+ is contained
in the intersection of WLO-optimal and Pareto-optimal so-
lutions. In the next section we show that, given additional
restrictions on the shape of the preference functions, such
weakest links can be shown to always exist.

Given an STPP P, let O�� u��! �" � � � (resp. O�� u�#%$'& � � � ) be
the set of WLO-optimal (respectively, Pareto-Optimal) solu-
tions of P, and let O�� u �
 ("*) � � � be the set of solutions to

�
returned by WLO+. Then the result can be stated as follows.

Theorem 1 If a weakest link constraint is found at each stage
of WLO+, then O�� u��
 ("*)� � ��+ O,� u��
 ("� � �.- O�� u�#/$'& � � � .
Moreover, if

�
has any solution, then O,� u �! �"0) � � � is

nonempty.

Proof:
First note that after an open weakest link is processed in

steps (4) to (6), it will never again be an open weakest link
(since its preference is reset to ' � +2*

�
). Since the theorem

assumes a weakest link constraint is found at each stage of
WLO+, the algorithm will terminate when the weakest link
constraint is not open, i.e., when all the soft constraints in � �
have WLO preferences that equal the best (1) value.

Now assume / H�O�� u��
 ("*)� � � . Since the first iteration
reduces the set of solutions of

��� %��
� � to O�� u �
 (" � � � , and
each subsequent iteration either leaves the set unchanged or
reduces it further, it follows that / HMO�� u��! �" � � � . Now sup-
pose / <H O�� u�#/$'& � � � . Then / must be dominated by a Pareto
optimal solution / 0 . Let 1 be a soft constraint in � for which
/10 is superior to / . Thus, the preference value of the dura-
tion assigned by / to 1 cannot be 1. It follows that at some
point during the course of the algorithm, 1 must become an
open weakest link. Since / is in O�� u �! �"0) � � � , it survives
until then, and so it must provide a value for 1 that is equal to
the chop level. However, since / 0 dominates / , /10 must also
survive until then. But this contradicts the assumption that 1
is a weakest link constraint, since / 0 has a value greater than
the WLO chop level. Hence, / is in O,� u�#/$'& � � � , and so inO�� u��! �"� � �*- O�� u�#/$'& � � � .

Next suppose the original STPP
�

has at least one solu-
tion. To see that O�� u��
 ("*)� � � is nonempty, observe that the
modifications in steps (4) to (6), while stripping out solutions



A B

max
[1,1]

C
max

[1,10]

D
[10,10]

max
[1,10]

Figure 5: A unique WLO+ Solution.

that are not WLO optimal with respect to
��� %	� � � , do retain

all the WLO optimal solutions. Clearly, if there is any so-
lution, there is a WLO optimal one. Thus, if the

��� %�� � � in
any iteration has a solution, the

��� %�� � � in the next iteration
will also have a solution. Since we are assuming the first��� %�� � � ( J ��� %�� � ) has a solution, it follows by induction
that O�� u��! �"0) � � � is nonempty.

�
The theorem shows that it is possible to maintain the

tractability of WLO-based optimization while overcoming
some of the restrictions it imposes. In particular, it is pos-
sible to improve the quality of the flexible solutions gener-
ated within an STPP framework from being WLO optimal to
being Pareto optimal.

Although the algorithm determines a nonempty set of so-
lutions that are both WLO optimal and Pareto optimal, the set
might not include all such solutions. Consider the example
in figure 5. Assume the preference function for all soft con-
straints is given by ' � ` � JS` , i.e., longer durations are pre-
ferred (signified by the < ��U label on the edges). The WLO+
algorithm will retain a single solution where BC and CD are
both 5. However, the solution where BC J�: and CD J�9 ,
which is excluded, is also both Pareto optimal and WLO op-
timal. (Note that AB, with a fixed value of 1, is the weakest
link.)

Many optimization schemes seek what is known as utili-
tarian optimality, where the objective is to maximize the sum
of the local preferences. However, the WLO+ solutions are
not necessarily utilitarian optimal with respect to all solutions
or even the WLO solutions. For example, in figure 5, if the
preference function is ' � ` � J ` , , a utilitarian optimal WLO
solution would be given by BC J 4 and CD J�� , but WLO+
will still return the solution where BC and CD are both 5.

We can summarize the position taken in this paper by say-
ing that utilitarian strategies, while attractive in many ways,
are apparently intractable. The WLO+ approach provides
some of the same benefit at lower cost. For example, non-
competing constraints are fully optimized by WLO+. For
competing constraints, WLO+ tends to divide the preferences
as equally as possible. In some applications, this might be
more desirable than a utilitarian allocation.

5 Existence of Weakest Links
In this section we show that under suitable conditions, a
weakest link constraint always exists. This involves a
stronger requirement than for WLO: the preference functions
must be convex, not merely semi-convex. This would include
linear functions, cycloids, and upward-pointing parabolas, for
example, but not Gaussian curves, or step functions. (Later
on, we will see this requirement can be relaxed somewhat so
that Gaussians can be permitted.)

Before proceeding, we note that while a solution / of an

STP P is defined in terms of an assignment to each variable, it
also determines a value / ���j� for each edge

�
, given by / ���j� J

/ � � � � / � � � where
�

and � are the start and end variables
of
�
, respectively. We will use this notation in what follows.

Now consider any consistent STP P. The minimal net-
work [Dechter et al., 1991] corresponding to P is another STP
P 0 . The constraints between any two points

�
and � in P 0 are

formed by intersecting the constraints induced by all possible
paths between

�
and � in P.

In the following, a preference function ' is said to be con-
vex if + 8�U %���� v � � ' ��U �Y/ is a convex set. The claim of the
existence of weakest links can be stated as follows:

Theorem 2 Let P be an STPP with continuous domains and
convex preference functions. Then there will be at least one
weakest link constraint for the WLO optimal set of solutions.

Proof:
Consider the (minimal) STP P

����
that corresponds to the

optimal chopping level for P (as described in the WLO algo-
rithm). Suppose there is no weakest link constraint. Then for
each edge constraint

�
there is a solution / + to P

����
such that' � / +

��� �8� � ����` , where ' is the preference function for the
edge.2

Let 	/ be the average of all the / + solutions, i.e.

	/ � � � J 4�
 v ( v�

+����
/ +
� � �

for all
� H �

where ( is the set of edges and
�

is the set of tempo-
ral variables. By the linearity of the constraints, it is easy
to show that 	/ is also a solution to P

����
. For example,

if / +
� � � � / +

� � ��� �
for all

�
, then 	/ � � � ��	/ � � � J4�
 v ( v�� +����

� / +
� � � � / +

� � �8��� � 4�
 v ( v �
v ( v � J � .
Since 	/ is a solution, we must have ' � 	/ � �j����� ����` for all

edges
�
. Notice, however, that there must be some edge

�
such that ' � 	/ � �j��� J ����` , otherwise 	/ would be a solution with
value greater than the optimal value. It follows that 	/ ��� � <J
/ +
� �j�

, since we already know that ' � / +
� �j��� � ����` .

Thus, either 	/ � �j� 8 / +
� �j�

or 	/ � �j� � / +
� �j�

. We consider
only the case where 	/ ���j� 8 / +

��� �
. (The proof is similar in the

other case.) Note also that ������� ��� /�� � �j� 8 	/ ���j� , since the
minimum of a set of numbers can only be equal to the average
if all the numbers are equal. It follows that ��� � � ��� / � � �j� 8
	/ � �j� 8 / +

� �j�
. However, ' � ��� � � ��� / � � �j���!� ���&` , ' � 	/ � �j��� J

����` , and ' � / +
��� �8� � ����` . This violates the convexity of ' ,

which establishes the theorem.
�

The operations in the WLO+ algorithm preserve the con-
vexity property of the preference functions. Each stage of
WLO+ repeats a WLO calculation. Thus, theorem 2 implies

Corollary 2.1 Suppose P is an STPP with continuous do-
mains and convex preference functions. Then a weakest link
is found at each iteration of WLO+.

An example of why the existence result does not apply more
generally to semi-convex functions is found in figure 6. The

2To avoid excessive subscripting, we suppress the implied " sub-
script on # here and in what follows. In all cases, the applicable
preference function will be clear from the context.
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Figure 6: An STPP with no weakest link

STPP in the figure contains two semi-convex step-like func-
tions with optimal preference values associated with dura-
tions ` and `20 . Assume the STPP is minimal, and that the
assignment

� J_`�% � 0 J_`20 is inconsistent. Then the highest
possible chop point is � , and no weakest link exists, i.e., for
neither

�
nor

� 0 is it the case that, for every solution / , � is the
value returned by the preference function associated with that
constraint for the duration assigned by / .

6 Discussion and Related Work
An examination of the proof of theorem 2 shows that the
weakest link constraint exists under a somewhat less restric-
tive condition than convexity: it is enough, assuming semi-
convexity, to require that plateaus (subintervals of non-zero
length where the preference function is constant) can only oc-
cur at the global maximum of the preference function. This
means, for example, that the theorem is applicable in princi-
ple to any semi-convex smooth function such as a Gaussian
curve.

However, in the practical setting of a computer program
where numbers are computed to a finite precision and contin-
uous curves are approximated, some adjustments may need
to be made. Note that a representation as a discretized step
function does not satisfy the no-plateau condition. An alter-
native is to treat a discretized function as corresponding to a
piecewise linear function where the linear segments join suc-
cessive points on the discretized graph. Even there, the long
tails of a Gaussian curve may get approximated by horizontal
segments. However, generally we can trim the domain of the
curve to eliminate the flat tails without excluding all the so-
lutions. In that case, the discretized Gaussian is acceptable.
(Note that figure 6 could be simulated by an example involv-
ing extreme Gaussians where the tails are essential for the
solution.)

Note that preferences such as longest or shortest durations,
or closest to a fixed time, which appear to be the most useful
in practice, can be easily modeled within this framework.

WLO+ has been implemented and tested on randomly gen-
erated problems, where each semi-convex preference func-
tion is a quadratic

��U , C ��U C 1 , with randomly selected pa-
rameters and

� � I . We compared the best solution found
after applying WLO+ with the quality of the earliest solution
found using the chop solver, using the utilitarian measure of
quality (i.e., summing preference values). An average im-
provement of between 6 and 10% was observed, depending
on constraint density (more improvement on lower density
problems). Future research will focus on the application of
WLO+ to the rover science planning domain.

The results described here are clearly relevant to any effort
whose objective is representing and reasoning about prefer-
ences and utility. A detailed survey of this vast literature is
clearly beyond our scope; here we provide pointers to work
that exhibits significant overlap. First, the idea of extending
CSPs to solve multi-criteria optimization problems is pro-
posed in [Torrens and Faltings , 2002]; this work also uses
Pareto-optimality as a criterion for ordering solutions. Sec-
ond, the idea of applying the notion of degrees of satisfac-
tion to solving temporal reasoning problems has been applied
previously [Dubois and Prade , 1989]. Third, a number of
graphical-based representations of local preferences have ap-
peared; in [Bacchus and Grove , 1995], for example, an ap-
proach is taken based on drawing connections between pref-
erences and probabilities, as expressed in a Bayesian network.
Finally, for a survey of AI-based approaches to preferences
and utility, with an emphasis on qualitative approaches, the
reader is referred to [Doyle and Thomason , 1999].

7 Summary
This paper has presented a reformulation of problems in the
optimization of temporal preferences using a generalization
of Temporal CSPs. The practical context from which this
effort arose is temporal decision-making in planning, where
associated with domains representing temporal distances be-
tween events is a function expressing preferences for some
temporal values over others. The work here extends previous
work by overcoming limitations in the approach that arose
when considerations of efficiency in reasoning with prefer-
ences resulted in coarseness in the evaluation procedure for
global temporal assignments.
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